NMP ## MARS MICROPROBE PROJECT **IPDT FORUM** Sarah A. Gavit January 29, 1997 ## New Millennium Program-**Agenda** **Mission Objectives** **Mission Overview** **Technologies & Partners** **Budget & Schedule** **Test Highlights** #### **New Millennium Program** ## **Mars Microprobe Project Objectives** - Demonstrate key technologies which enable future network science missions - Demonstrate a passive atmospheric entry and landing system - Demonstrate highly integrated microelectronics which can withstand both low temperatures and high decelerations - Demonstrate in-situ, surface and subsurface science data acquisition, and - Provide an opportunity to collect meaningful science data ## **Technology Demonstrations** Non-erosive, lightweight, single-stage atmospheric entry system Microtelecommunications system with programmable transceiver Power microelectronics with with mixed digital/analog ASICs Ultra low temperature lithium battery **Advanced 3D HDI microcontroller** Flexible interconnects for system cabling Meteorological high-g pressure sensor Soil conductivity high-g temperature sensor Sample/water experiment ## New Millennium Program- # Technologies Selected for DS2 & Team Participants* | Technology | <u>Lead</u> | <u>Participants</u> | |---|----------------|--| | Non-erosive, lightweight, single-stage atmospheric entry system | Program Office | JPL, SNL, LRC, AMES
ARA, New Mexico Tech. | | Microtelecommunications system with programmable transceiver | Telecom IPDT | Atmel, JPL, Space Electronics
Ohio State University, UCLA | | Power microelectronics with mixed digital/analog ASICs | μelectr. IPDT | Boeing Missiles & Space | | Ultra low temperature lithium battery | MAMS IPDT | JPL, Yardney, Eagle Picher | | Advanced 3D HDI microcontroller | μelectr. IPDT | APL, Boeing, GE, LMA, Tech Assoc.
Univ. of Tenn., Mission Research, LRC | | Flexible interconnects for system cabling | MAMS IPDT | Lockheed Martin Astronautics | | Meteorological high-g pressure sensor | Program Office | Nova Sensors, AMES, Stanford | | Soil conductance high-g temperature sensor | Program Office | Rosemont | | Sample / Water Experiment | ISIM IPDT | Caltech, JPL, AMES | ^{*} Lockheed Martin Electro-Optical Systems is primary industry partner for integration and test | 3 | | New Millennium Deep-Space 2 Mars Microprobe Project (LEVEL) | | | | | | | | | | | 7 01 1 | | | | | | | | | | | T | | | | | | | | | | |--|---------------|--|---|----------|---------------|----------------|---------------|---------------|--------------|-----------------------|---------------|--|--|--------------|---------------|-----------------|------------|--------------|-------------|--|--------------|--|--|----------------|-----------------|----------------|--------------|--------------|----------|----------------|----------------|------------------|--| | ACHIEVEMENT: | | | | | | | | | | | | | | , ļ | 1896 | | | | 189 | B | Ţ | 1997 | | | | | | | | | | | | | 1998 | | | | ** | 丁 | | 2000 | | | | | ACTIVITY . | | <u> </u> | 1 2 3 4 | | | 1 2 3 4 | | | 1, | JFMA | | | M J J A | | | ~_ | 8 0 8 | | | D | 1172 | | 3 4 | | 1 2 | | a } | 4 | 7 | 2 } | 3 | ~ | | | 1 Muce '96 Lander Misslop | | | 1 + 1 | GA. | | W _F | | | COR. | ļ | 1 75 | A | *** | -4 | | ~ઃં∳ | ₽ | - | • | } | ĻĻ | | | 1 | ٠, | | | | | - } | ا ب | { | | | 2 Mara Global Surveyor Mission | | - | - | U-E | | GA
GA | | . 🗤 | | <u></u> | | | | | ╼╬ | | ∇ | _ | SR V | <u>; </u> | <u></u> | 7.ar | <i>y</i> | EAR? | V 6 | h | | | | | —-Ì | ~~~~ <u>\$</u> | | | 3 | | - 1 | ļ | ŀ | - 1 | ı | 1 | ` { ` | ĺ | ŀΪ | | | İ | ij | İ | ļ | ``` | | i | | ! | | ĺ | | | ł ' | !! | : I | | Ī | | ĺ | | | 4 Miscaprobe Project | | | | 1 | | <u>T</u> | | \neg | \top | ! | ***** | | \vdash | ┪ | ┯┉╬ | **** | | | | | ······ | • | 1 | Phon | Ĺ | ~~~~ | | millon | \neg | 十 | - | | | | 5 Pinane | | | + " | - 1 | | | | - | | | ***** | | | | <u>};</u> | rante. | ×=-,, i | | | <u> </u> | <u> </u> | | | | 茫 | | + <u> </u> | The Electric | <i>7</i> | 十 | ─† | | | | 6 Technology Selection | <u> </u> | | Į., | | | Vλ | Delical Art | 1 1 | 1 | | } | | | | 7 | | | | 1 | 1 | | Ţ | 1 | | Ţ | | | | 1 | 1 | | | | | 7 Taub Aguazzanta | | | | 1 | - 1 | 15+4 | + t is two | 7 0 | ets 1 | 1 | Ζ» | le Z | 1 | |] | 3 | | |] | j | Z ≎• | ¥ 3 | į. | 1 | 1 | | | | 1 | {11 | | | | | 8 Project Parision | | | 1 | V | - | | } | ٧× | | <u> </u> | <u> </u> | | | - 1 | <u></u> | | ∇ | | - | | | | × V | | ⊽ ∶∞ | ŧ | | | | | | | | | 3 Mary '93 / Leunch Sallverspies | - | | - | | | | | \rightarrow | | <u>}</u> | <u>,</u> | | 7 244 | | | | ' | <u> </u> | ∇N | ý. | | <u>7 m</u> | M 1 | <u>~~</u> | be. | | | Ш | <u> </u> | [| | | | | 10 Project Schedula Reserve | | | | İ | • | | ŀ | i | ı | 1 | 1 | ŀ | | • | - 1 | | | : | 1 | | Ę | l | | 1 | Ì. | [| | | | ŀ | - | . [| | | 12 (nitegration, Teat & Leuro) | | | + | | —÷. | | | + | + | ` | | | | ∔ | | | | Ļ | ┾ | i - | | ļ | ⊢ | | L . | ļ | | | \dashv | \dashv | |
 | | | 113 Changina canon Tente | | | + | | . Eurly | Dem | 10 - A- | •!·A | 61 | # | 4 | - | | | ∔ | | <u> </u> | ⊢ | | ┿┈ | ├ ~~ | | | ╁ | ├ | } | | ; ; | \vdash | ┅╁ | | , | | | 34 ES Tests | | ~~~ | - | | 1 | ~~~ | end To | | _ | ₩ | | | - { | | | | | ╄ | ╁╌ | | | <u></u> | | ⊢ | ! | - | | <u> </u> | ┟╼╪ | 극 | -ļ | | | | 15 Fight System Testing Pressur | | | 1 | } | 7 | - | 3 | 1 | ╅- | ***** | T | ▛ | | į | ᠆᠊ᡶ | ₩ | | 1 | 1 | | { | - | } | į - | ╁ | ├ ~ | | ₩ | | - | | | | | 18 Byetem Teete | | - | 1 | | | ~~. | | - [- | 7 | <u> </u> | | 7991 | • | | | 300 | W | <u> </u> | <u> </u> | | - | 400 | <u>*</u> - | i An | er a t | ئىسىن
ئەتھە | <u>}</u> | ▎ | 1 | | | | | | 17 | | ŀ | | Ì | ŧ | | - [| 1 | Ì | 1 | 1 | • | Ì | ſ | | | Min | Γ | üusl | 744 | , | į | Ţ ' | Ĭ | Ï | 1 | Ì | • | 1 | Ì | Ì | | | | 18 Flight Systems | <u>-</u> - | | T | 1 | | ₩ | | \neg | + | 1 | · | | | ╗ | | | | ┢ | †- | 1 | ! ~~ | • | | | - | | | М | | _† | <u>_</u> | | | | 19 Systems Engineering | | | 1 | | | | . 🔻 | CPR T | I PR | 7 | 1 | 7 | 7= | ╗ | | | _ | | 1 | 1" | | · . | 厂 | T | ! - | 1 | <u> </u> | | \Box | \neg | | ***** | | | 20 Shirty, Dalaciana & impanot (ECI) | | · | | | \Box | | ÇİPE | ₩. | Ŧ | V IPA | | Ι | Ζ÷ | | V | Qual | | VРη | | Ï | | Ţ | 1. | 丁 | | T | | | | | ۰۰
i | | | | 21 Machanical | ·• · · · · | | | | <u> </u> | Ţ | CPR | ¥. | (PR | V | I | | ∇ | • \ | 7 20. | | | V-3 | aht | 1 | | Ţ |] | 1 | <u>i</u> | | | | \Box | \Box | | | | | 22 Satisty | | | 1 | | - 1 | | | * | 1 | | 1970 | <u> </u> | 1 | • | | Ÿ٠ | | | | 1 | ٧ | Page 42 | į.
į. | | | | 1 |] | | _ [| | | | | 23 Power Electronics | | <u></u> | | | | | C/फ | ¥ <u>!</u> | W. | | ŽŽ. | . | | | 7 1964 | | | ¥F¥ | | <u> </u> | <u> </u> | <u>. </u> | <u>.</u> | • | <u></u> | <u> </u> | <u></u> | | | { | | } | | | ZA AMC | | | ! | | - | | | 7 | cea | | [≱ /‡ | <u> </u> | V. | | | 200 | 1 | <u>Z fin</u> | | €. | ţ | <u>.</u> | <u>. </u> | ▙ | Ļ | Ļ., | ¹ | ļ | 1 | | [| | | | 25 Talacom | | | + | | | | CPA | <u> </u> | _ | 4 | VIPR | _ | <u> </u> | F-140 | Υ.Σ | / OH | <u> </u> | ZEli | | ! , | Ļ | ــــ | ļ | ļ | <u> </u> | [, | | ┾┷┦ | | - | | | | | 26 Indirutisints 27 Packaging | | ······ | - | 1 | | ∤ | | CPR | | 4 | PR V | | 7 555 | | 700 | riverence of | | | _ | ┥╌ | - | } | ╄ | ! | }. — | | ╂┉┉┤ | ₩ | - | | | | | | 28 Software | | [- | + . | ┝╾╅ | | ····· | · ¹ | LIPH | VICE | - | ¥ | <u>. </u> | Δ. | | | ~_ . | ļ <u>`</u> | | FPP | | ļ.~~ | - | ┿━ | ╁ | } | ┼ | ļ | ┉ | ┝╾╌╁ | | | ,u | | | 29 S/W Celiveries | | | + | \vdash | | <u>-</u> | - | + | * * | ₽ | | ···· | ** | , | | | | | | + | | 7 | ╁╌ | | ┢ | | | ╢ | H | | ᅲᆉ | | | | 30 | | 3 | 1 | | ľ | } | - 1 | 1 | 1 | ¥Į. | 1 | • | 1 | ' <u>!</u> | 1 | | | ļ | Ī | Ì | | ļ * | 1 | 1 | į | 1 | | 1 | | į | - 1 | | | | 31 Mission Ope & Date Analysis (MOADA) | | ······· [| 1 | - | | - | | + | 1 | CPA (| ****** | | | | ~~ ∳ | | ∇ | Men. | Ų. | Ý. | <u> </u> | <u> </u> | ٠. | <u></u> | <u> </u> | itani
Saux | <u>}</u> | } | | ⇉⇡ | Debs ; | irrund
Arres. | | | 32 | | | | | ŧ | į | | ŧ | ţ | a i | - | ţ | • | 5 | , | i | È | { | [1 | PR. | | | | 1 | • | Ė | 1 | | | _ ; | | | | | 34 Soleriae | | 1 | AT SH | 40t- T | - | | - | | - | ļ | | | | SZ / | w ha | - | | | V | Теат | Salpo | (ipu | | 1 | 1 | | 1 | | | | | | | | | | | | | _[| | | AO to | на | T_{i} | | | \Box | | | | | | | <u> </u> | ļ.,, | | | | | <u> </u> | | | | | | | | | | | inal Peer | Rovie | w | | | PS | iR | Pres | hip P | invie. | ~ | Interior Peer Review SAT | | | | | | | | Science Advisory Teem | ļ | | | | | | | mench Pleadinese Review SP System Pet
inmotendum of Agreement SR Status Revi | * | | | are fisher fast Talk Thermal Mass Model | CPR Conceptual Past Review P | | Presiminary Design Review | 9M Knglmering Model P | PS PS | rojest Re | welv | h b 14444- | | | | | | | | _ | | ~~~~ | | | | | | ~~~~ | | | | | | | | | | ***** | | ### — New Millennium Program — Early Demonstration Tests #### Dates / Testbed Fall 1995 to April 1996, Airplane drop in Mojave Desert #### **Purpose** Provide quick turnaround, cost effective, test environment for early prototype designs #### **Accomplishments** Early demonstration of penetrator fore and aftbody mechanical shape and size Early demonstration of tether deployment system Early demonstration of various electronic packaging and instrumentation techniques ## New Millennium Program-Angle of Attack Tests #### Dates / Testbed April 1996 to September 1996, Sandia Airgun at New Mexico Tech (Socorro, NM) #### **Purpose** Optimize probe mechanical design for worst case impact conditions. Characterize probe impact capabilities. #### **Accomplishments** Probe successfully tested to 12 degree angle-of-attack and 30 degrees angle-of-incidence. Tests included both soft and hard soil environments (S = 3 to 17, soft clay to frozen soil) #### - New Millennium Program - #### **System Packaging / Engineering Model 1 Tests** #### Dates / Testbed September 1996 to December 1996, Sandia Airgun at New Mexico Tech (Socorro, NM) #### **Purpose** Demonstrate mechanical engineering model design, system packaging techniques, and high risk electrical components #### **Accomplishments** The following have been successfully demonstrated under worst case impact conditions - Fore and aftbody mechanical design - Forebody electronics prism - Telecommunications crystals and pressure sensors (survival packaging dependent) - Power electronics inductors and capacitors - Tether deployment - Sample collection motor (mixed results) The following have NOT been successfully demonstrated under worst case impact conditions - Microcontroller packaging prototype (scheduled 1/21/97) - Sample collection motor (scheduled 1/21/97) - Batteries packaged for high-G environment (scheduled 2/15/97) - Antenna (continuous testing) ## **New Millennium Program** #### **Entry, Descent & Impact Tests** #### **Arcjet Tests & Trajectory Simulations** NASA Ames completed arcjet tests on all potential aeroshell TPS material combinations during weeks of 11/4/96 and 11/11/96. Results showed somewhat better than expected performance from SIRCA/Split material which is now officially baselined NASA Langley completed first set of high fidelity Monte Carlo trajectory simulations. Initial results show hypersonic reorientation within 50 seconds of entry and 2 sigma penetration performance #### **Wind Tunnel Tests** Successfully completed transonic wind tunnel tests at correct Reynolds number at TsNiMash near Moscow in Russia 11/5/96 and 11/6/96. Results showed positive stability throughout transonic flight regime thus validating the DS2 aerodynamic design